Temporal autocorrelation in univariate linear modeling of FMRI data.

نویسندگان

  • M W Woolrich
  • B D Ripley
  • M Brady
  • S M Smith
چکیده

In functional magnetic resonance imaging statistical analysis there are problems with accounting for temporal autocorrelations when assessing change within voxels. Techniques to date have utilized temporal filtering strategies to either shape these autocorrelations or remove them. Shaping, or "coloring," attempts to negate the effects of not accurately knowing the intrinsic autocorrelations by imposing known autocorrelation via temporal filtering. Removing the autocorrelation, or "prewhitening," gives the best linear unbiased estimator, assuming that the autocorrelation is accurately known. For single-event designs, the efficiency of the estimator is considerably higher for prewhitening compared with coloring. However, it has been suggested that sufficiently accurate estimates of the autocorrelation are currently not available to give prewhitening acceptable bias. To overcome this, we consider different ways to estimate the autocorrelation for use in prewhitening. After high-pass filtering is performed, a Tukey taper (set to smooth the spectral density more than would normally be used in spectral density estimation) performs best. Importantly, estimation is further improved by using nonlinear spatial filtering to smooth the estimated autocorrelation, but only within tissue type. Using this approach when prewhitening reduced bias to close to zero at probability levels as low as 1 x 10(-5).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the effective degrees of freedom in univariate multiple regression analysis

The general linear model provides the most widely applied statistical framework for analyzing functional MRI (fMRI) data. With the increasing temporal resolution of recent scanning protocols, and more elaborate data preprocessing schemes, data independency is no longer a valid assumption. In this paper, we revise the statistical background of the general linear model in the presence of temporal...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Convolution Models for fMRI

This chapter reviews issues specific to the analysis of functional magnetic resonance imaging (fMRI) data. It extends the general linear model (GLM) introduced in Chapter 8 to convolution models, in which the blood oxygenation-level-dependent (BOLD) signal is modelled by neuronal causes that are expressed via a haemodynamic response function (HRF). We begin by considering linear convolution mod...

متن کامل

Accurate autocorrelation modeling substantially improves fMRI reliability

Given the recent trend towards validating the neuroimaging statistical methods, we compared the most popular functional magnetic resonance imaging (fMRI) analysis softwares: AFNI, FSL and SPM, with regard to temporal autocorrelation modelling. We used both resting state and task-based fMRI data, altogether 10 datasets containing 780 scans corresponding to different scanning sequences and differ...

متن کامل

Adaptive Analysis of Functional MRI Data

Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuroimaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2001